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Bioinformatics Chapter 3: Sequence analysis

CHAPTER 4: SEQUENCE ANALYSIS
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1.2 Relevant questions
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2.b Simulating from probability distributions
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3 Biological words (k=2)
4 Markov Chains
5 Biological words (k=3)

6 Modeling the number of restriction sites in DNA
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1 The biological problem

1.2 Questions
What does sequence analysis enclose?
Sequence analysis includes:

 Multiple sequence alignment,

e sequence searches and clustering;

* prediction of function and localisation;

 novel domains and motifs;

e prediction of protein, RNA and DNA functional sites and

other sequence features.
(Bioinformatics Journal scope)
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Types of analyses

e GC content

e Pattern analysis

* Translation (Open Reading Frame detection)

* Gene finding

e Mutation

* Primer design

e Restriction map
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GC content studies:

- Stability
- GC: 3 hydrogen bonds

- AT: 2 hydrogen bonds
- Codon preference

- GCrich fragment has increased probability to point towards a gene

What is a CpG island?
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CpG island

The CG island is a short stretch of DNA in which the frequency of the CG
sequence is higher than other regions. It is also called the CpG island,
where "p" simply indicates that "C" and "G" are connected by a
phosphodiester bond.

CpG islands are often located around the promoters of housekeeping genes
(which are essential for general cell functions) or other genes frequently
expressed in a cell.

At these locations, the CG sequence is not methylated.

(http://www.web-books.com/MoBio/Free/Ch7F2.htm)
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CpG island

e By contrast, the CG sequences in inactive genes are usually methylated to
suppress their expression.

0 [The methylated cytosine may be converted to thymine by accidental
deamination. Unlike the cytosine to uracil mutation which is efficiently
repaired, the cytosine to thymine mutation can be corrected only by
the mismatch repair which is very inefficient.]

 Hence, over evolutionary time scales, the methylated CG sequence will be
converted to the TG sequence. This explains the deficiency of the CG
sequence in inactive genes.

(http://www.web-books.com/MoBio/Free/Ch7F2.htm)

Remark: http://whyevolutionistrue.wordpress.com/2011/09/26/epigenetics-again-will-it-

cause-a-revolution-in-evolution/
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Relevant questions

Given the DNA sequence

AATCGGATGCGCGTAGGATCGGTAGGGTAGGCTTTAAGATCATGCTATTTTCGAGA
TTCGATTCTAGCTAGGTTTAGCTTAGCTTAGTGCCAGAAATCGGATGCGCGTAGGAT
CGGTAGGGTAGGCTTTAAGATCATGCTATTTTCGAGATTCGATTCTAGCTAGGTTTT
TAGTGCCAGAAATCGTTAGTGCCAGAAATCGATT

many questions arise
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Relevant questions

e |sitlikely to be a gene? e Can we determine the
 What is the possible expression organism from which this
level? sequence came?
 What is the possible protein e Do parameters describing the
product? sequence differ from those
e Can we get the protein product? describing bulk DNA in that
e Can we figure out the key residue organism?
in the protein product?  What sort of sequence might
» What sort of statistics to be used this be?
for describing this sequence? - Protein coding?

- Cenromere / Telomere?
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Tools to answer the questions

'.
-

About = Applications » GUIs = Servers o
Downloads e Licence #» User docs ® Developer docs o
Administrator docs ¢ Get involved = Support =
Meetings * News e Credits

EMBOSS is funded firom May 2000 by BESRC grant BBR/GO2264X]

Funded from Mayv 2006 to April 2000 by BBSRC grant BB/D018358/1

About EMBOSS Overview s Usess FAQ Citing EMBOSS

A high-quality package of free, Open Source software for molecular
biology ... more >

Applications EMBOSS « EMBASSY » Groups Proposed

Hundreds of useful, well documented applications for molecular
sequence and other analyses ... more >

GUIs Jemboss s GUls s Web « Others
We support the Jemboss GUI but many others are available... more >
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Tools to answer the questions

Copvrdiehr © F#97-2607
Tom Hall

Fhis Binsciences
Carfchad, €4 9100

BioEdii iz a biclogical sequence aliznment editor written for Windows 95/98NT/2000HF. An
intuitive multiple document interface with cowrenient features makes alignment and manipulation
of sequences relatively easy on vour desktop computer.  Several sequence mampulation and

analvsis -}ptmm and links o extarnal anaylsis programs facilitate a working environment which
allows vou te view and manipulate sequences with sumple point-and-click operations.

BioEdit's features include: Neir version is WinXP compatible
BinEdit.sip
(Full instally
# Severzl modes of hand alignmment ¢ EMNA comparative anzlysis tools
Bug Nxes ! changes o Antomated Clustal™W aliznment ¢ Graphical matrix data viewing tools
# Automated Blast searchas (Jocal and WA ¢ Shaded aligmment fizures
Gunurif:lff:'tmaﬁnn # Plazmid drawing and annotation ¢ Tranzlation-based nucleic zeid alignment
P p—— ® Appesnory application confizuration ¢ AR trace viewing, editing and printing
[T Tormat help doc) # Festiction mapping ¢ Customizable . other featimas
Note: Although BioEdit was recently updated, it 1s no longer being reliably
Yiew Screenshois . A N :
maintained. and the documentation 1s out of date and no longer mamtamed.

It1s bemng upl:ht-ed slowly, but there 1s no guaranteed finish date. Untal
documentation 15 complete, plav with the menus and see what happens, or
email with a question.

Note: Scoring in pairwise alignment functions does not agree with the example
the help document. This will be investigated ifwhen T have time. Thad considered
remowing the functions, but decided no to on the grounds that they generally work
OF for quick manipulations and can be useful as a ime-saving utility. They should
not, however, be used as a teaching tool.
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Recall: Different cell types

e Fukaryotes: organisms with a rather complex cellular structure. In their
cells we find organelles, clearly discernable compartments with a particular
function and structure.

- The organelles are surrounded - Mitochondria are other
by semi-permeable examples of organelles, and
membranes that are involved in respiration and
compartmentalize them energy production

further in the cytoplasm.

nucleus_

chromosomes— 7" . .
FIAS mitochondrion

- The Golgi apparatus is an
example of an organelle that is

golgi complex

involved in the transport and - .
secretion of proteins in the
cell.
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Recall: Different cell types

* Prokaryotes: cells without organelles where the genetic information floats
freely in the cytoplasm

Plasma membrane.

Cytoplasm &

Cell wadl
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For instance, base composition for bacterial data:
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to-alert wan bo now Nows or

toels? Piease Contackgs.
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Focus on human data and Bioconductor / R Environment

“i [: DN DU [: TO R Biocconductor is an open source and open development software project
L '

open source software for . for the analysis and comprehension of genomic data

getting started OVErvVIEwW downloads documentation publications workshops

project news

F 2009-01-0
R, the open source platform used by Bioconductor, featured
in a series of articles in the Mew York Times.

More..

QUICK LINKS

Seattle, WA, 27-28 July 2009.

Copenhagen, Denmark, 24-25 August 2009, &

Following the usual 6-month cycle, the Bioconductor community has released Bioconductor 2.4
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Methods to answer the questions

For instance by investigating frequencies of occurrences of words

Words

e Words are short strings of letters drawn from an alphabet
In the case of DNA, the set of lettersis A, C, T, G
A word of length k is called a k-word or k-tuple

Differences in word frequencies help to differentiate between different
DNA sequence sources or regions

Examples:
- 1-tuple: individual nucleotide
- 2-tuple: dinucleotide
- 3-tuple: codon
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1.b Biological words of length 1 or base composition

e For free-living organisms, DNA is typically duplex

- Every A (G) on one strand is matched by a T (C) on the complementary

strand
* Note the difference with bacteriophages (viruses that infect bacteria)

- Bacterium, the singular form of the word bacteria, is a one-celled living
organism, with complete sets of both ribonucleic acid (RNA) and
deoxyribonucleic acid (DNA) genetic codes.

- Avirus is little more than a section of RNA or DNA strand covered by a

protein shell.
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Biological words of length 1

 There are constraints on base composition imposed by the genetic code:
fr(C+G)=07
e The distribution of individual bases within a DNA molecule is not ordinarily
uniform
- In prokaryotic genomes, there is an excess of G over C on the leading
strands (strands whose 5’ to 3’ direction corresponds to the direction of
replication fork movement)
- This can be described by the “GC skew”, characterized by:
" (HG - #C) / (HG + #C)
" #=nr of
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2 Probability theory revisited

2.a Probability distributions
Introduction

e Probability distributions are a fundamental concept in statistics. They are
used both on a theoretical level and a practical level.

 Some practical uses of probability distributions are:
- to calculate confidence intervals for parameters and
- to calculate critical regions for hypothesis tests.
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Introduction

e Statistical intervals and hypothesis tests are often based on specific
distributional assumptions. Before computing an interval or test based on a
distributional assumption, we need to verify that the assumption is justified
for the given data set. In this case, the distribution does not need to be the
best-fitting distribution for the data, but an adequate enough model so that
the statistical technique yields valid conclusions.

e Simulation studies usually rely on random numbers generation. These
generations are from a specific probability distribution ...
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Introduction

e Discrete probability functions are referred to as probability mass functions
and continuous probability functions are referred to as probability density
functions.

- The term probability function covers both discrete and continuous
distributions. When we are referring to probability functions in generic
terms, we may use the term probability density functions to mean both
discrete and continuous probability functions.
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Assumptions

e Consider the nucleotide sequence on a single strand written in a given 5’ to
3’ direction
e Simple rules specifying a probability model:
- First base in sequence is either A, C, T or G with prob pa, pc, p7, PG
- Suppose the first r bases have been generated, while generating the
base at position r+1, no attention is paid to what has been generated
before. A, C, T or G is generated with the probabilities above
e Notation for the output of a random string of n bases: L, L,, ..., L, (L; = base
inserted at position i of the sequence)
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Probability distributions

e Suppose the “machine” we are using produces an output X that takes
exactly 1 of the J possible valuesinaset y = {x{, X5, ..., X, }
- In the DNA sequence J=4and y = {4,C,T,G }
- Xis a discrete random variables (since its values are uncertain)
- If p;is the prob that the value x; occurs, then
" PPy =20andp; + ...+ p; =1
* The probability distribution (probability mass function) of X is given by the
collection py, ..., py
- P(X=x)) =p), j-1, ..., )
* The probability that an event S occurs (subset of y) is P(X € §) =
Zj:xj €S (pj)
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Meaning of the probability distribution

e A discrete probability function is a function that can take a discrete number
of values (not necessarily finite). This is most often the non-negative
integers or some subset of the non-negative integers.

 There is no mathematical restriction that discrete probability functions only
be defined at integers, but in practice this is usually what makes sense.

- For example, if you toss a coin 6 times, you can get 2 heads or 3 heads
but not 2 1/2 heads.

- Each of the discrete values has a certain probability of occurrence that
is between zero and one. That is, a discrete function that allows
negative values or values greater than one is not a probability function.
The condition that the probabilities sum to one means that at least one
of the values has to occur.
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Probability distributions

 What is the probability distribution of the number of times a given pattern
occurs in a random DNA sequence Ly, ..., L,?
- New sequence Xy, ..., X:
Xi=1 if Li=A and X;=0 else
- The number of times N that A appears is the sum
N=X1+...+X,
- The prob distr of each of the X;:
P(Xi=1) = P(Li=A)=pa
P(X;=0)=P(L=CorGorT)=1-pa

e What is a “typical” value of N?

- Depends on how the individual X; (for different i) are interrelated
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Independence

e Discrete random variables X4, ..., X,, are said to be independent if for any
subset of random variables and actual values, the joint distribution equals
the product of the component distributions

e According to our simple model, the L; are independent and hence

P(Li=l,Ly=ly, ...,La=l,)=P(Li=11) P(Ly=Il;) ...P(L,=I,)

K Van Steen CH3: 26
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Expected values and variances

e Mean and variance are two important properties of real-valued random
variables and corresponding probability distributions.
 The “mean” of a discrete random variable X taking values x4, x5, . . . (de-
noted EX, where E stands for expectation, which is another term
for mean) is defined as:
EX = Z T, PIX =x;).

- EXi=1 Xpa+0 X (1 —pa)
- If Y=cX, then EY = cEX
- E(Xq +... + X)) = EX; + ... + EX,
e Because X; are assumed to be independent and identically distributed (iid):
E(X1 +... + X;,) = nEX{ = np,
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Expected values and variances

 The expected value of a random variable X gives a measure of its location.
Variance is another property of a probability distribution dealing with the
spread or variability of a random variable around its mean.

Var(X )= F|X — EXT

- The positive square root of the variance of X is called its standard
deviation sd(X)

Do you know the difference between standard error and standard deviation?

K Van Steen CH3:28



Bioinformatics Chapter 3: Sequence analysis

Expected values and variances

 The idea is to use squared deviations of X from its center (expressed by the
mean). Expanding the square and using the linearity properties of the
mean, the Var(X) can also be written as:

Var(X) = E [X*] — [EX]?

- If Y=cX then VarY = c’VarX
- The variance of a sum of independent random variables is the sum of
the individual variances

 For the random variables X;:

VarXi = [12 X pa+ 02 X' (1 = pa)] = pa=pa(l —pa)
VarN = nVarX; =np,(1 — py)
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The binomial distribution

 The binomial distribution is used when there are exactly two mutually
exclusive outcomes of a trial. These outcomes are appropriately labeled
"success" and "failure". The binomial distribution is used to obtain the
probability of observing x successes in a fixed number of trials, with the
probability of success on a single trial denoted by p. The binomial
distribution assumes that p is fixed for all trials.

e The formula for the binomial probability mass function is :

n . .
P(N =) = (]) p/(1-p)"7,j=0,1,..,n

n
with the binomial coefficient (]) determined by

ny n!
()= jtn =y
and j!=j(j-1)(j-2)...3.2.1, 0!=1
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The binomial distribution

e The mean is np and the variance is np(1-p)
* The following is the plot of the binomial probability density function for
four values of p and n = 100.

4g . Binemial POF (P=0.1, N=10g g Bimemial POF (P=0.25, N=100)
(5] ()
B 045 B 0.075
= =
£ ] oy |
E ad E aas
: g
2 aas 2q.025
Y || a- ———
0 20 4 8 =@ 100 0 20 4 e @ 100
Binomial POF{P=0 50, N=100) Binomial POF{P=0.75, N=100)
Q.08 ai
Qa7
f g0 B oars -
; 005 ;
£ aos £ oos
= =}
T 003 g
2 aaz; 205
a1 J i
a ' " T .,
a 20 a0 . [} o1} 100 a 20 ili] " 1] Bl 100
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2.b Simulating from probability distributions

 The idea is that we can study the properties of the distribution of N when
we can get our computer to output numbers Ny, ..., N, having the same
distribution as N
- We can use the sample mean to estimate the expected value EN:

N= (N, + ..+ N)/n

- Similarly, we can use the sample variance to estimate the true variance
of N:

n
1 _
2 — N: — N)2
s n_l_Z(l )
l=

Why do we use (n-1) and not n in the denominator?
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Simulating from probability distributions

 What is needed to produce such a string of observations?

- Access to pseudo-random numbers: random variables that are
uniformly distributed on (0,1): any number betweenOand 1is a
possible outcome and each is equally likely

e Simulating an observation with the distribution of X;:
Take a uniform random number u

SetX;=1ifU <p = p, and 0 otherwise.
Why does this work? ... P(X; =1) = P(U < pa) = pa
Repeating this procedure n times results in a sequence Xy, ..., X, from

which N can be computed by adding the X’s
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Simulating from probability distributions

e Simulate a sequence of bases Ly, ..., L,:
Divide the interval (0,1) in 4 intervals with endpoints

ParPa +Pc,Pa+Pct+ 061
If the simulated u lies in the leftmost interval, L;=A

If u lies in the second interval, L1=C; if in the third, L;=G and otherwise
|_1=T
Repeating this procedure n times with different values for U results in a

sequence Ly, ..., L,

e Use the “sample” function in R:
pi <- ¢(0.25,0.75)
x<-c(1,0)
set.seed(2009)
sample(x,10,replace=TRUE,pi)
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Simulating from probability distributions

e By looking through a given

500
|

simulated sequence, we can count

400
|

the number of times a particular

300
|

pattern arises (for instance, the
base A)
* By repeatedly generating

Frequency

200
|

100
|

sequences and analyzing each of —

1

[ I T T T |
200 220 240 260 280 300

them, we can get a feel for
whether or not our particular Number of successes
pattern of interest is unusual
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Simulating from probability distributions

e Using R code:

x<- rbinom(2000,1000,0.25)

mean(x)

sd(x)"2

hist(x,xlab="Number of successes",main="")

What is the number of observations?

e Suppose we have a sequence of 1000bp and assume that every base occurs

with equal probability. How likely are we to observe at least 300 A’s in such
a sequence?

- Exact computation using a closed form of the relevant distribution
- Approximate via simulation

- Approximate using the Central Limit Theory
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Exact computation via closed form of relevant distribution

e The formula for the binomial probability mass function is :

P(N =j) = (7}) p/(1—-p)*7,j=0,1, ..,n
and therefore
1000
P(N > 300) = z (1()].00) (1/4)7 (1 — 1/4)1000-J
j=300

= 0.00019359032194965841
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P: exacily 300 oul of 1000
Method 1. exact binomial calculatiom 0.000045661147405764.:88

Method 2. approxamation via normal  0.000038

Method 3. approximation via Poisson --—---
P: 300 or fewer out of 1000

Method 1. exact binomial calculationm 0.9998520708293378

Method 2. approximation via normal 0.999885

Method 3. approximation via Poisson -——-

P 300 or more out of 1000
Method 1. exact binomial calculation 0.00019359032194565841

Method 2. approximation via normal 0.000153

Method 3. approximation via Poisson -—-

For hypothesis testing P: 300 or more out of 1000

One-Tail Two-Tail
Method 1. exact binomial calculatiom 0.00019359032194565841 | 0.0003025705168772097
Method 2. approximation via normal 0.000153 | 0.000306

Method 3. approxamation via Poisson - | ------

(http://faculty.vassar.edu/lowry/binomialX.html)

K Van Steen
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Approximate via simulation

e Using R code and simulations from the theoretical distribution,
P(N = 300) can be estimated as 0.000196 via.

X<- rbinom(1000000,1000,0.25)
sum(x>=300)/1000000

or 0.0001479292 via
1-pbinom(300,size=1000,prob=0.25)
pbinom(300,size=1000,prob=0.25,lower.tail=FALSE)
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Approximate via Central Limit Theory

The central limit theorem offers a 3™ way to compute probabilities of a

distribution

It applies to sums or averages of iid random variables

Assuming that X, ..., X, are iid random variables with mean 1 and variance

a2, then we know that for the sample average

= 1
XTL —_ ; (Xl + ...+ Xn),
2

EX,=pand VarX,, = —

n
* Hence,

Xn— M\ _ Xn— H\ _
(o) oo )=

K Van Steen CH3:40
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Approximate via Central Limit Theory
 The central limit theorem states that if the sample size n is large enough,

P(a < Btk o b) ~ ¢(b) — ¢(a),

N
with ¢ (.) the standard normal distribution defined as

b(2) = P(Z <7) = f b (x)dx

* The central limit theorem in action using R code:

bin25<-rbinom(1000,25,0.25)

av.bin25 <- 25*0.25

stdev.bin25 <- sqrt(25*0.25*0.75)
bin25<-(bin25-av.bin25)/stdev.bin25
hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4),prob=TRUE,xlab="Sample size
25", main="")

x<-seq(-4,4,0.1)

lines(x,dnorm(x))
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Approximate via Central Limit Theory

04

0.3

Density
0.2
|

0.1

0.0

Sample size 25
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Approximate via Central Limit Theory
e Estimating the quantity P(N = 300) when N has a binomial distribution
with parameters n=1000 and p=0.25,
E(N) =nu =1000 x 0.25 = 250,

1 3
sd(N) = Vno = [1000 Xx—X— =~ 13.693
\ 4" 4

PN > 300) = P (N — 250 . 300 — 250)
- B 13.693 13.693

~ P(Z > 3.651501) = 0.0001303560

* R code:
pnorm(3.651501,lower.tail=FALSE)

How do the estimates of P(N = 300) compare?

K Van Steen CH3:43



Bioinformatics Chapter 3: Sequence analysis

3 Biological words of length 2

Introduction

e Dinucleotides are important because physical parameters associated with
them can describe the trajectory of the DNA helix through space (such as
DNA bending). This may affect gene expression.

e Concentrating on abundances, and assuming the iid model for Ly, ..., L,:

P(L; = l;, Liyy = liv1) = Dy Dy,

e Has a given sequence an unusual dinucleotide frequency compared to the

iid model?

- Compare observed O with expected E dinucleotide numbers

2 _ (0-E)?
= =

with E = (n — 1)plipli+1'
Why (n-1) as factor?
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Comparing to the reference

e How to determine which values of x?are unlikely or extreme?
- Recipe:
= Compute the number c given by

{1 +2p;, — 3p, ifl; = ligq

C — .

1-— 3plipli+1' if li + li+1
XZ

= Calculate the ratio o where Xzis given as before

= |f this ratio is larger than 3.84 then conclude that the iid model is
not a good fit

= Note: gchisq(0.95,1) =3.84
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Comparing to the reference

e How to determine which values of x?are unlikely or extreme?
- Simulate percentage points of the distribution of the statistic x?:
= Generate strings of 1000 letters having distribution e.g.,
(0.3,0.2,0.3,0.2) for (A,C,T,G)
Calculate O, the number of times the pair AC is observed

2
Calculate E and XT

Plot a histogram of these values
= Compare

What is the theoretical distribution?
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4 Markov Chains

Introduction

e When moving from bacteria (such as E. coli, a common type of bacteria that
can get into food, like beef and vegetables) to real genomes, a more
complicated probabilistic model is required then the iid model before to
capture the dinucleotide properties

 One approach is to use Markov chains.

e Markov chains are a direct generalization of independent trials, where the
character at a position may depend on the characters of preceding
positions, hence may be conditioned on preceding positions
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Conditional probabilities

e If Q refers to the set of all possible outcomes of a single experiment, A to a
particular event, and A to the complement Q-A of A, then

P(A) + P(A°) =1,

P(ANB)
P(B)

e The conditional probability of A given Bis P(4|B) = ,P(B) >0

P(A|B) P(B)
P(A)

e As aconsequence: P(B|A) = , also known as Bayes’ Theorem

e For By, ..., Bx forming a partition of Q, this is the Bi are disjoint and the Bi are
exhaustive (their union Is Q), the law of total probability holds:

k k
P(A) = ZP(A N Bi) = ZP(A|BL') P(Bi)
i=1 =1
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The Markov property

 The property will be explained via studying a sequence of random variables
X, t=0,1,... taking values in the state space {A,C,T,G}

e The sequence {X;,t = 0} is called a first-order Markov chain if only the
previous neighbor influences the probability distribution of the character at
any position, and hence satisfies the Markov property:

PXev1 =Jj1Xe =1, X1 = lgq, e, Xo =1ip) = P(Xpy1 = JjlXe = 0)

fort = 0andforalli,j,i;_q,...,ip in the state space

e We consider Markov chains that are homogeneous:
P(X;4+1 = j|X; = 1) = p;j (i.e. independent of the position t)
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The Markov property

* The p;; are the elements of a matrix P called the one-step transition matrix

of the chain.
- Note that Zj pij = 1 for DNA sequences

- How does a one-step transition matrix look like for DNA sequences?
- Which situation corresponds to the iid model?
e Stepping from one position to the next is one issue, how to start is another
issue
- An initial probability distribution is needed as well
- It is determined by a vector of probabilities corresponding to every

possible initial state value i: nl.(o) =m; =P(Xy=1)
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The Markov property

* The probability distribution for the states at position 1 can be obtained as
follows:

P(X1=1J)

ZieXP(Xo =1i,X; =J)
= ZiEXP(XO =1) P(X; = j|Xo = 1)

= X e y LiDij
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The Markov property

 To compute the probability distribution for the states at position 2, we first
show that P(X, = j|X, = i) is the ij-th element of PP=P’

P(X; =j|Xo=1) = Xke  PXy =j, X1 = k| Xg =1)
= ZkEXP(XZ =jlX; =k, Xo = D)P(X; = k| Xy = i)
= ZkEXP(XZ =Jj|X1 = K)P(X; = k| Xy = i)
= Yk € y PikPkj = (PP);;
e Therefore

2 .
7Tj( )= P(X, =) = zﬂipizj
LEY
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The Markov property

* |In a similar way it can be shown that

ﬂ]-(t) =P(X; =J) = z m; Pjj
LE Y

)

* In principle, it can happen that the distribution " is independent of t. This

event is then referred to as a stationary distribution of the chain.
- Itoccurs when }; ¢ , ;p;j = m; forall j, or stated differently when

T = TP
- Withm; = P(X, =i),alsomr = mP*and P(X; = j) = m;
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Creating our own Markov chain simulation in practice

* Assume the observed dinucleotide relative frequencies (each row specifies
a base and each column specifies the following base):

A C G T
A 0.146 0.052 0.058 0.089
C 0.063 0.029 0.010 0.056
G 0.050 0.030 0.028 0.051
T 0.087 0.047 0.063 0.140

 How to compute the individual base frequencies?
e How to propose initial state parameters to build a Markov chain?
e How to compute the transition matrix?
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markovl <- function(x,pi,P,n){

mg <- rep(0,n)

mg[1] <- sample(x,1,replace=TRUE, pi)

for (kin 1:(n-1)){
mg[k+1] <- sample(x,1,replace=TRUE,P[mg[k],])
}

return(mg)

}

x<-c(1:4)

pi <- ¢(0.342,0.158, 0.158, 0.342)

# A C G T one-step transition matrix:

P <- matrix(scan(),ncol=4,nrow=4,byrow=T)
0.423 0.151 0.168 0.258

0.399 0.184 0.063 0.354

0.3140.189 0.176 0.321

0.258 0.138 0.187 0.415
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tmp <- markov1(x,pi,P,50000)

A<- length(tmp[tmp[]==1])

C<- length(tmp[tmp[]==2])

G<- length(tmp[tmp[]==3])

T<- length(tmp[tmp[]==4])
(C+G)/(A+C+G+T) # fraction of G+C

count <-0

for (i in 1:49999){
if (tmp[i]==2 && tmp[i+1]==3)
count <- count+1

}
count/49999 # abundance of CG dinucleotide as estimated by the model
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5 Biological words of length 3

Introduction

 There are 61 codons that specify amino acids and three stop codons.

e Since there are 20 common amino acids, this means that most amino
acids are specified by more than one codon.

e This has led to the use of a number of statistics to summarize the
"bias" in codon usage.

e Since there is variation in codon frequencies, it is interesting to investigate
these frequencies in more detail
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Predicted relative frequencies

 For a sequence of independent bases L4, L,, ..., L, the expected 3-
tuple relative frequencies can be found by using the logic employed
for dinucleotides we derived before

 The probability of a 3-word can be calculated as follows:

P(L; =ri; L1 = ralggs = r3) =
P(LL — Tl)IP(L.g,_Fl — TQ)IFJ(LH_Q — ’Tq)

e This provides the expected frequencies of particular codons, using
the individual base frequencies
e |t follows that among those codons making up the amino acid Phe,
the expected proportion of TTT is
P(TTT)
P(TTT) + P(TTC)
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Predicted relative frequencies

e Comparison of predicted and observed triplet frequencies in coding
sequences for a subset of genes and codons from E. coli. Figures in
parentheses below each gene class show the number of genes in
that class. Table 2.3 from Deonier et al 2005.

Observed
(Gene Class I Gene Class 11

Codon Predicted (502) (191)
Phe TTT 0.493 0.551 0.291
TTG 0.507 0.449 0.709

Ala  GCT 0.246 0.145 0.275
GCC 0.254 0.276 0.164

GCA 0.246 0.196 0.240

GCG 0.254 0.382 0.323

Asn AAT 0.493 0.409 0.172
AAC 0.507 0.591 0.828
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Predicted relative frequencies
e Medigue et al. (1991) considerably from their
clustered the different genes predicted frequencies

based on such codon usage

patterns. e
Gene Class I Gene Class 11
° They ObserVEd three gene Codon Predicted (502) (191)
CIaSSES. Phe TTT 0.493 0.551 0.291
. TTC 0.507 0.449 0.709
e For Phe and Asn different As G6F [0 e g
GCC 0.254 0.276 0.164
usage patterns are observed o e 0196 "
GCG 0.254 0.382 0.323
for Gene Class | and Gene Asn AAT  0.493 0.409 0.172
AAC 0.507 0.591 0.828
Class Il.
e For Gene Class Il in particular, /
the observed codon Moderate expr
frequencies differ High expression'levels
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The codon adaptation index

e A statistic that can describe each protein-coding gene for any given
organism is the codon adaptation index, or CAl (Sharp and Li, 1987).

e This statistic compares the distribution of codons actually used in a
particular protein with the preferred codons for highly expressed
genes.

e One might also compare them to the preferred codons based on gene
predictions for the whole genome, but the CAl was devised prior to
the availability of whole-genome sequences.
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The codon adaptation index

 Consider a sequence of amino acids X = xy, x, ..., X, representing
protein X, with x, representing the amino acid residue corresponding
to codon k in the gene.

e We are interested in comparing the actual codon usage with an
alternative model: that the codons employed are the most probable
codons for highly expressed genes.

 For the codon corresponding to a particular amino acid at position k in
protein X, let p, be the probability that this particular codon is used to
code for the amino acid in highly expressed genes

e Let g, correspond to the probability for the most frequently used
codon of the corresponding amino acid in highly expressed genes.
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The codon adaptation index

e The CAl is defined as

CAI =

I 1/L
H Pk/%}
k=1

e It is the geometric mean of the ratios of the probabilities for the
codons actually used to the probabilities of the codons most
frequently used in highly expressed genes.

* An alternative way of writing this is

log(CAI) Z log(pw /qr)-

e This expression is in terms of a sum of the logarithms of probability
ratios, a form that is encountered repeatedly in other contexts as well.
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The codon adaptation index

e The CAIl can be shown to be correlated with mRNA levels
e Hence, the CAIl for a gene sequence in genomic DNA provides a first

approximation of its expression level:
- if the CAIl is relatively large, then we would predict that the

expression level is also large.

e Consider the amino acid sequence from the amino terminal end of the
himA gene of E. coli (which codes for one of the two subunits of the
protein IHF: length L = 99).

M A L T K A E M S E & L 2]
ATG GCG CTT ACA AAA GCT GAA ATG TCA GAA TAT CTG TTT
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The codon adaptation index

Example of codon usage patterns in E. coli for computation of the codon

adaptation index of a gene. Top lines: amino acid sequence and

corresponding codons. Upper table: probabilities for codons in lower table.

The probability of the most frequently used codon in highly expressed genes
is underlined (Fig 2.2 — Deonier et al 2005).

M A L T K yaY E M S E ¥ L F
ATG GCE CTT ACA AAA GCT GAA ATG TCA GAA TAT CTG TTT
1.000]0.469]0.018] 0.451]|0.798| 0.269] 0.794|1.00d 0.428[/0.794] 0.193 0.018|0.228
' 0.057|0.018|0.468| 0.202| 0.057| 0.206 0.319| 0.206| 0.807 0.018|D.772
0.275|0.038|0.035 0.275 0.033 0.038
0.199|0.033|0.046 0.199 0.007 0.033
0.007 0.037 0.007
0.8B8 0.176 0.888
ATG|GCT |TTA |ACT |ARA | GCT |GAA |ATG| TCT |GAA | TAT| TTA |TTT
GCC |TTG |ACC |AAG | GCC | GAG TCC |GAG| TAC| TTG |TTC
GCA |[CTT [ACA GCA TER TR
GCG [CTC |ACG GCG TCG G4l e
CTA AGT 5 Y
CTG AGC CTG
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The codon adaptation index
e The CAl for this fragment of coding sequence is given by

1.000 _ 0.199 _ 0.038 _0.035 1Y%

CAL=17300 X 0469 ¥ 0888 X 0.468

e |f every codon in a gene corresponded to the most frequently used
codon in highly expressed genes, then the CAl would be 1.0.

e |n E. coli a sample of 500 protein-coding genes displayed CAIl values in
the range from 0.2 to 0.85 (Whittam, 1996)
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Word distribution and occurrences - The biological problem

* Suppose that we wanted to obtain a sample of DNA that contained a
specific gene or portion of a gene with very little other DNA.
e How could we do this?

- Today, given a genome sequence, we could design PCR primers
flanking the DNA of interest and could amplify just that segment
by PCR.

- Prior to the development of rapid genomic sequencing
technologies, the process was much more complicated.

K Van Steen CH3 : 67



Bioinformatics Chapter 3: Sequence analysis

The biological problem

e DNA is a macromolecule: DNA molecules can have very high
molecular weights.

e Because DNA can be long but is very thin, it is easily broken by
hydrodynamic shear (e.g. due to physical stress induced by
nebulisation).

- Note that the DNA in human chromosome 1, at 245,000,000bp, is
8.33cm long and only 20 x10-° cm thick

e Such a long molecule cannot be transferred from one sample tube to
another without breakage during pipetting.

 The result of shearing is a collection of DNA fragments that are not
broken at the same position: molecules containing the gene of
interest intact might be very rare.
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The biological problem

e Restriction endonucleases provides the means for precisely and
reproducibly cutting the DNA into fragments of manageable size
(usually in the size range of 100s to 1000s of base pairs), and

e molecular cloning provides the method for amplifying the DNA of
interest

e Cloning puts DNA of manageable size into vectors that allow the
inserted DNA to be amplified, and the reason for doing this is that
large molecules cannot be readily manipulated without breakage.
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The biological problem

A restriction map is a display of positions on a DNA molecule where

cleavage by one or more restriction endonucleases can occur.

* |tis created by determining the ordering of the DNA fragments
generated after digestion with one or more restriction
endonucleases.

 The restriction map is useful not only for dissecting a DNA segment
for further analysis but also as a "fingerprint" or bar code that
distinguishes that molecule from any other molecule.

e A graphical summary is given in the following figure (Figure 3.1 —

Deonier et al 2005)
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The biological problem

e The order of fragments (D, A, F, G, C, E, B) is originally unknown. A
variety of techniques may be employed to determine this order.

Undigested Molecule

D ¥ A +F+g+c+E+B

Digest with
restriction Construct

" endonuclease restriction map

Products:
A
B
B B 0y 8.8, 2. U,
D 2:5; 2.0; L.5;
E Determine sizes by 0.5 kb
F gel electrophoresis
G
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The biological problem

e Although restriction mapping is not as central as it once was for
genome analysis, workers at the bench still use restriction mapping
to evaluate the content of clones or DNA constructs of interest

e Hence, being able to determine locations and distributions of
restriction endonuclease recognition sites is still relevant.

- A probabilistic basis is needed for analyzing this kind of
problem.

- In addition, word occurrences can be used to characterize
biologically significant DNA subsequences.
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6 Modeling the number of restriction sites in DNA

Introduction

e Modelling the number of restriction sites in DNA is important when
addressing the following questions:

- If we were to digest the DNA with a restriction endonuclease
such as EcoR1, approximately how many fragments would be
obtained, and what would be their size distribution?

- Suppose that we observed 761 occurrences of the sequence 5'-
GCTGGTGG-3'in a genome that is 50% G+C and 4.6 Mb in size.

= How does this number compare with the expected number?
= How would one find the expected number?
= Expected according to what model?
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Introduction

* We will model the underlying sequence as a string of iid letters and
will use this model to find the probability distribution of the number
of restriction endonuclease cleavage sites and the distribution of
fragment sizes of a restriction digest.

e Because of their occurrence in promoter regions, it is also relevant to

inquire about the expected frequencies of runs of letters (such as
AAAAAA:---A tracts).
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Introduction

e While doing so we assume, as before, that the genome of an
organism can be represented as a string L,, ..., L, drawn from the
alphabet y = {a,,a,,a5,a, } = {A,C,G,T}, where nis the number
of base pairs

 Note that if we are given a DNA sample, we usually know something
about it; at least which organism it came from and how it was
prepared.

- This means that usually we know its base composition (%G+C)
and

- its approximate molecular weight, useful pieces of information
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The number of restriction sites

e Restriction endonuclease recognition sequences have length t (4, 5,
6 or 8 typically), where t is much smaller than n.

e Our model assumes that cleavage can occur between any two
successive positions on the DNA.

- This is wrong in detail because, depending upon where cleavage
occurs within the bases of the recognition sequence (which may
differ from enzyme to enzyme), there are positions near the ends
of the DNA that are excluded from cleavage.

- However, since t is much smaller than n, the ends of the
molecule do not affect the result too much
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The number of restriction sites

e We again use X, to represent the outcome of a trial occurring at
position i, but this time X; does not represent the identity of a base
(one of four possible outcomes) but rather whether positioniis oris
not the beginning of a restriction site.

e |n particular,

X 1. if base 4 is the start of a restriction site,
* 10, if not.

e We denote by p the probability that any position i is the beginning
of a restriction site:

X, — 1, with probability p,
* 7 1 0. with probability 1 — p.
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The number of restriction sites

 Unlike with tossing a fair coin, for the case of restriction sites on
DNA, p depends upon
- the base composition of the DNA and
- the identity of the restriction endonuclease.
 For example:
- Suppose that the restriction endonuclease is EcoRlI, with
recognition sequence 5'-GAATTC-3'.
= The site really recognized is duplex DNA, with the sequence
of the other strand determined by the Watson-Crick base-
pairing rules.
- Suppose furthermore that the DNA has equal proportions of A, C,
G, and T.
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The number of restriction sites

- The probability that any position is the beginning of a site is the
probability that this first position is G, the next one is A, the next
one is A, the next one is T, the next one is T, and the last one is C.

- Since, by the iid model, the identity of a letter at any position is
independent of the identity of letters at any other position, we
see from the multiplication rule that

p = P(GAATTC) = P(G)P(A)P(4)P(T)P(T)P(C) = (0.25)° ~ 0.00024.

- Notice that p is small, a fact that becomes important later.
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The number of restriction sites

 The appearance of restriction sites along the molecule is
represented by the string Xq, X5, ..., X,

e The number of restriction sitesisN=X; + X, +'"" + X,,,,
where m=n-5.

- The sum has m terms in it because a restriction site of length 6
cannot begin in the last five positions of the sequence, as
there aren't enough bases to fit it in.

- For simplicity of exposition we take m = n in what follows.

e What really interests us is the number of "successes" (restriction
sites) in n trials.
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The number of restriction sites

e If X1, X5, ..., X, were independent of one another, then the
probability distribution of N would be a binomial distribution with
parameters n and p;

- The expected number of sites would therefore be np
- The variance would be np(1 - p).

e We remark that despite the X; are not in fact independent of one
another (because of overlaps in the patterns corresponding to X;
and Xj,1, for example), the binomial approximation usually works
well.

e Computing probabilities of events can be cumbersome when using
the probability distribution

PN =))=(;

j ) pj(l — p)”‘j, j=0,1, ..,n
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Poisson approximation to the binomial distribution

e In preparation for looking at the distribution of restriction fragment
lengths, we introduce an approximate formula for P(N =j)when N
has a binomial distribution with parameters n and p.

e Using the example for EcoRIl before with p = 0.00024 for DNA that
has equal frequencies of the four bases, a molecule that is 50,000 bp
long would have 50,000 x 0.00024 = 12 expected sites according to
our model.

* Notice that because p is very small, the number of sites is small
compared to the length of the molecule.

- This means that VarN = np(1 - p) will be very nearly equal to EN =
np.

- Contrast this with a fair coin-tossing experiment, where p = 0.5.
With 300 coin tosses, we would have EN = 300 x 0.5 = 150, and
VarN =300x0.5x(1-0.5)=75.
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Poisson approximation to the binomial distribution

* |n what follows, we assume that n is large and p is small, and we set
A= np.
e We know thatforj=0,1, ..., n,

PV =) =(})pa-p
e Writing

nin—1n—-2)---(n—7+1)

g oo Y
P(N =j)=— 1 —p) p’(1-p)"

and given that the number of restriction sites (j) is small corhpared to the
length of the molecule (n), such that

nn—-1Dn-2).(n—j+1)=n/,(1-p) =1,
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Poisson approximation to the binomial distribution

. (np) . A\
P(N = j) = q (1 —mp) = — 1———] .

Jis T

|

in which A = np.
 From calculus, for any x,
T
lim (1 - E) =1

n—os (2

e Since nis large (often more than 10%), we replace (1-— %)" by e~ to

get our final approximation in the form

Y
P(N = j) ~ i & =012 0

* This is the formula for the Poisson distribution with parameter A = np =
Var(N) = E(N)
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Poisson approximation to the binomial distribution

e Example:

- To show how this approximation can be used, we estimate the
probability that there are no more than two EcoRl sites in a DNA
molecule of length 10,000, assuming equal base frequencies

- Earlier we obtained p=0.00024 for this setting.

- The problem is to compute P(N < 2)

" Therefore A =np = 2.4
= Using the Poisson distribution: P(N < 2) = 0.570
" |[nterpretation: More than half the time, molecules of length 10,000

and uniform base frequencies will be cut by EcoRI two times or less
R code:

ppois(2,2.4)
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The Poisson process

 There is a more general version of the Poisson distribution that is very
useful. It generalizes n into "length" and p into "rate." The mean of
the corresponding Poisson distribution is length x rate. We suppose
that events (which were restriction sites above) are occurring
uniformly on a line at rate p then

e M (ul)"
B

e |f there is more than one interval, the lengths of the intervals
simply add,

P(k events in (z,z +1)) = M i

e~ klitl2) (41 4 1))"
k! 5
as long as the intervals are disjoint (i.e., x <x+ [ <y <y + [,).

P(k events in (z,x+11)U(y,y+12)) =
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Distribution of restriction fragment lengths

e With this generalization, we assume that restriction sites now occur
according to a Poisson process with rate A per bp. Then the
probability of ksites in an interval of length | bp is

oA ()P

k!

e We can also calculate the probability that a restriction fragment
length X is larger than x. If there is a site at y, then the length of that
fragment is greater than x if there are no events in the interval (y, y
+ X):

P(N = k) = , b=, L2 .

P(X > x) = P(no events in (y,y +)) = g %, a0,
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Distribution of restriction fragment lengths

 The previous has some important consequences:
PX <a)= | flpdy=1-e
40

so that the density function for X is given by
flz) = Ae™, > 0.

e The distance between restriction sites therefore follows an exponential
distribution with parameter A
- The mean distance between restriction sites is 1/4
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Simulating restriction fragment lengths

* From the previous, the restriction fragment length (fragment size)
distribution should be approximately exponential

e But what would we actually see for a particular sequence conform to
the iid model (Alul enzyme with recognition sequence AGCT)?

A.
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Fragment sizes (bp) produced by Alul digestion of bacteriophage lambda DNA
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Simulating restriction fragment lengths

* |In other words, if we simulated a sequence using the iid model, we
could compute the fragment sizes in this simulated sequence and
visualize the result in a manner similar to what is seen in the actual
case in the figure on the previous slide (Fig. 3.3. Deonier et al 2005)

R code simulating a DNA sequence having 48500 positions and
uniform base probabilities:

x<-c(1:4)
propn <- ¢(0.25,0.25,0.25,0.25)
seq?2 <- sample(x,48500,replace=TRUE,prob=propn)

seq2[1:15]
length(seq2[])
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Simulating restriction fragment lengths

* R code identifying the restriction sites in a sequence string, with bases

coded numerically:

rsite <- function(inseq, seq){
# inseq: vector containing input DNA sequence,
#A=1, C=2,G=3,T=4
# seq: vector for the restriction site, length m
# Make/initialize vector to hold site positions found in inseq
xxx <- rep(0,length(inseq))
m <-length(seq)
# To record whether position of inseq matches seq
truth <- rep(0,m)
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# Check each position to see if a site starts there
for (i in 1:(length(inseq) - (length(seq) -1)))}{
for (jin 1:m){
if (inseq[i+j-1]==seq[jIN{
truth[j] <- 1 # Record match to jth position
}

}
if (sum(truth[]) ==m){ # Check whether all positions match

XxX[i] <- i # Record site if all positions match

}

truth <- rep(0,m) # Reinitialize for next loop cycle
}
# Write vector of restriction sites positions stored in xxx
L <- xxx[xxx>0]
return(L)
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Simulating restriction fragment lengths

 The restriction sites we look for are for Alul, AGCT.
* R code envoking the appropriate function:

alul <-¢(1,2,3,4)

alu.map <- rsite(seq2,alul)
length(alu.map)
alu.map[1:10]

How close is the actual number of restriction sites to the
number predicted by our mathematical model?
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Simulating restriction fragment lengths

 The fragment lengths can be obtained by subtracting positions of successive
sites

* R code doing it for you:

flengthr <- function(rmap,N){
# rmap is a vector of restriction sites for a linear molecule
# N is the length of the molecule
frags <- rep(0,length(rmap))
# Vector for substraction results: elements initialized to 0
rmap <-c(rmap,N)
# Adds length of molecule for calculation of end piece
for(i in 1:(length(rmap)-1)){
frags|i] <- rmapli+1]-rmapli]
}
frags <- c(rmap[1],frags) # First term is left end piece
return(frags)
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Simulating restriction fragment lengths
* R code continued ....

alu.frag <- flengthr(alu.map,48500)
alu.frag[1:10]

What is the largest or smallest fragment?
max(alu.frag(])
min(alu.frag[])

Internal checks
length(alu.fragl])
sum(alu.frag[])
How come that the
length of alu.frag is one more than the length of alu.map?
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Simulating restriction fragment lengths

Histogram of alu.frag
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Simulating restriction fragment lengths

 The previous plots were obtained via the R code:
plot(c(0,2500),c(3,1),xlab="Fragment Size",ylab="",type="n",axes=F)
axis(1,c(0,500,1000,1500,2000,2500))
for (i in 1:length(alu.frag)){

lines(c(alu.frag[i],alu.fraglil),c(1,3))

}
hist(alu.frag,breaks=seq(0,2500,50), freq = TRUE,xlab="Fragment Size")

e The main important question is:
Is our theoretical model still ok when looking at

restriction fragment lengths?
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Simulating restriction fragment

lengths
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Simulating restriction fragment lengths

* To determine whether the distribution in case of lambda DNA differs
significantly from the mathematical model (exponential distribution),
we could break up the length axis into a series of "bins" and
calculate the expected number of fragments in each bin by using the
exponential density.

* This would create the entries for a histogram based on the
mathematical model.

 We could then compare the observed distribution of fragments from
lambda DNA (using the same bin boundaries) to the expected
distribution from the model by using for instance a y* — test.
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Occurrences of k-words (home reading)
Introduction

e The aforementioned statistical principles can be applied to other
practical problems, such as discovering functional sites in DNA.
e We will use promoter sequences as an example.
e Promoters are gene regions where RNA polymerase binds to
initiate transcription.
e We wish to find k-words that distinguish promoter sequences
from average genomic sequences.
e Because promoters are related by function, we expect to observe
k-words that are over-represented within the promoter set
compared with a suitable null set.
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Introduction

e Using already known methods, we will determine expected k-word
frequencies and compare them to the observed frequencies.

e Via theoretical distributions, it can be tested whether over-
represented k-words appear with significantly higher frequencies

than the reference
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Counting k-words in promoter sequences

e Consider N promoter sequences of length L bp, which we denote
bySy, ..., Sy-

 The null set might consist of N strings of L iid letters, each letter
having the same probability of occurrence as the letter frequencies
in genomic DNA as a whole.

* Here, we take a small word size, k = 4, so that there are 256 possible
k-words. With no a priori knowledge of conserved patterns, we must
examine all 256 words.

e Question: Are there an unusual number of occurrences of each word
in the promoter region?
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Counting k-words in promoter sequences

e 8 promoter sequences (-75 - +25 to transcriptinal start site) are given in the
file promsegex.txt

 The expectation of each 4-word according to the null (iid) model is easily
computed:

P(w = ACGT) = papcpePr
E(nroftimesw appearsinS_i) = (L—4+ 1) pspcpcPr

E(Xy) =N(L —4+ 1) papcPcPr

with X, the number of occurrences in N sequences
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Counting k-words in promoter sequences

R code:

ec.prom <- read.table("promsegex1234.txt",sep="",header=F)
ec.prom <- as.matrix(ec.prom)

ec.prom <- ec.prom[,-ncol(ec.prom)]

ncol(ec.prom)

w <- 4 # restricting attention to 4-words

prob.ec <- ¢(0.246,0.254,0.254,0.246) # base frequencies for the E coli sequence
expectd.ec <- array(rep(0,4*w),rep(4,w)) # 4 is the max value in each dim for w
# there are w dimensions
for (i in 1:4){
for (jin 1:4){
for (kin 1:4) {
for (min 1:4) {
expectd.ecli,j,k,m] <- 8*97*prob.ec[i]*prob.ec[j]*prob.ec[k]*prob.ec[m]
# 8 is the number of sequences in this example
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HL-w+1=100-4+1=97

Ncount4 <- function(seq,w){
# w is length of word
tcount <- array(rep(0,4*w),rep(4,w))
# array[4 times 4 times 4 times 4] to hold word counts, elements set to zero
N <- length(seq[1,]) # length of each sequence
M <- length(seq[,1]) # number of sequences

HH
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# Count total number of word occurrences

for (j in 1:M){ # looping over sequences
jcount <- array(rep(0,4*w),rep(4,w))
# array to hold word counts for sequence j
for (k in 1:(N-w+1)){ # looping over positions
jcount[seq(j,k],seq[j,k+1],seq[j,k+2],seq[j,k+3]] <-
jcount[seql[j,k],seq[j,k+1],seq[j,k+2],seq[j,k+3]] +1
# adds 1 if word at k, k+1, k+2, k+3 appears in sequence j
}
tcount <- tcount + jcount
# add contribution of j to total

}

return(tcount)

}

prom.count <- Ncount4(ec.prom,4)

Counting k-words in promoter sequences
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Internal check

sum(prom.count)

What is the most frequent word?

max(prom.count)

How many words occur more at least 10 times?

length(prom.count[prom.count|,,,]>=10])
(1:256)[prom.count],,,]>=10] # the actual positions
prom.count[prom.count[,,,]>=10] # the actual values
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Counting k-words in promoter sequences

How to know to which 4-words the positions refer to?

kwordseq <- NULL
for (i in 1:4){
for (jin 1:4){
for (kin 1:4) {
for (min 1:4) {
kwordseq <- c(kwordseq,paste(i,j,k,m,sep=""))
}
}
}

}
kwordseq[(1:256)[prom.count],,,]>=10]]

* The actually observed word frequencies need to be compared with those
obtained via our mathematical model
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Counting k-words in promoter sequences

Word Observed Freq Expected Freq
"1111" 14 2.841857
"1144" 12 2.841857
"2124" 10 3.029698

e Rcode:

kwordseq[(1:256)[prom.count],,,]>=10]]
prom.count[prom.count[,,,]>=10]
expectd.ec[(1:256)[prom.count],,,]>=10]]

* Are these abundances significant ?

- So what is the expected number of occurrences of the k-word?

- How are these numbers distributed?
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Counting k-words in promoter sequences

* Previously, we counted all occurrences of a k-word in the whole set of N
regions

* Alternatively, we can count the number of promoter sequences in which
the word occurs at least once.

- Why is it sufficient to look at “at least one”, without further
specification? = Only one occurrence at a particular location may be
sufficient for functioning

* This will lead to an alternative statistic of which the distribution conforms
to the normal approximation of the binomial distribution
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Counting k-words in promoter sequences

* |n practice:
- Simulate 5000 sequences with letter probabilities corresponding to the

E coli genome
- Use the simulated data to estimate

pw = P(w occurs at least once in a 51-letter sequence)
# of sequences in which w appears at least once
h 5000 ‘
e For the number N,, of promoter sequences in which w appears at least
once,

NW T 8pw

\/8pw(1 T pw)
when there would be 8 trials.

Note that this is in fact too small for the normal approximation to
hold, but in other situations it may actually perform pretty well.

Zw

~N(0,1)
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Counting k-words in sequences

Ncount4b <- function(seq,w){
# w is length of word
tcount <- array(rep(0,4*w),rep(4,w))
# array[4 times 4 times 4 times 4] to hold word counts, elements set to zero

ncount <- array(rep(0,4*w),rep(4,w))

# array[4 times 4 times 4 times 4] holds number of sequences with one or more of
each k-word

N <- length(seq[1,]) # length of each sequence

M <- length(seq[,1]) # number of sequences

# Count total number of word occurrences

for (j in 1:M){ # loopiing over sequences
jcount <- array(rep(0,4”w),rep(4,w))
# array to hold word counts for sequence j
for (k in 1:(N-w+1)){ # looping over positions
jcount[seq[j,k],seqlj,k+1],seqlj,k+2],seq[j,k+3]] <-
jcount[seq]j,k],seqlj,k+1],seqlj,k+2],seq[j,k+3]] +1
# adds 1 if word at k, k+1, k+2, k+3 appears in sequence j
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}

tcount <- tcount + jcount
# add contribution of j to total

# plug-in: add 1 to ncount if word occurs W= once in j

for (k in 1:4){
for (lin 1:4){
for (min 1:4) {
for (nin 1:4) {
if (jcount[k,|,m,n]!=0){
ncount[k,|,m,n] <- ncount[k,|,m,n]+1

return(tcount,ncount)

}
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Counting k-words in sequences

* R code for computation of p,,

ec.sim <- matrix(nrow=5000,ncol=51)
for (i in 1:5000){
ec.sim[i,] <- sample(x,51,replace=T,prob.ec)

}

sim.count <- Ncount4b(ec.sim,4)

* R code for computation of N,

prom.countSncount[1,1,1,1]
prom.countSncount[1,1,4,4]
prom.countSncount[2,1,2,4]
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Counting k-words in sequences

Word Observed Freq | Expected Freq | N,, Pw p-value

"1111" 14 2.841857 7 0.1356 5.027e-10
"1144" 12 2.841857 6 0.1474 7.627e-07
"2124" 10 3.029698 4 | 0.1642 5.176e-03

A=1; C=2; G=3; T=4

* R code for computation of p-values

Nw <-

2,1,2,4])
pwW <-

c(prom.countSncount[1,1,1,1],prom.countSncount[1,1,4,4],prom.countSncount|

c(sim.countSncount[1,1,1,1]/5000,sim.countSncount[1,1,4,4]/5000,sim.countSn

count[2,1,2,4]/5000)
options(digits=4)

Zw <- (Nw-8*pw)/sqrt(8*pw*(1-pw))

1-pnorm(Zw)
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Main reference:

e Deonier et al. Computational Genome Analysis, 2005, Springer.
(Chapters 2,3)

Background reading: - useful for your homework

 Morgan et al 2009. ShortRead: a Bioconductor package for input, quality assessment, and
exploration of high throughput sequence data. Bioinformatics Advance Access published
August 3.

e 1/0 and Quality Assessment using ShortRead. R document May 31, 2009

e Bangham 2005. The (computational) means and the motif. Nature Reviews Genetics —
Bioinformatics 6:161.
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In-class discussion document

e Gregory 2005. Synergy between sequences and size in large-scale genomics. Nature Reviews
Genetics 6: 699-.

o Key “for your library” reference: Venter et al 2001. The sequence of the human genome.
Science 291: 1304-.

Questions:

* In Class reading_Gregory2005.pdf
* |In Class reading_Venter2001.pdf
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